Nonparametric quantile regression models via majorization minimization-algorithm
نویسندگان
چکیده
منابع مشابه
Nonparametric M-quantile Regression via Penalized Splines
Quantile regression investigates the conditional quantile functions of a response variables in terms of a set of covariates. Mquantile regression extends this idea by a “quantile-like” generalization of regression based on influence functions. In this work we extend it to nonparametric regression, in the sense that the M-quantile regression functions do not have to be assumed to be linear, but ...
متن کاملUndersampled Phase Retrieval via Majorization-Minimization
In the undersampled phase retrieval problem, the goal is to recover an N -dimensional complex signal x from only M < N noisy intensity measurements without phase information. This problem has drawn a lot of attention to reduce the number of required measurements since a recent theory established that M ≈ 4N intensity measurements are necessary and sufficient to recover a generic signal x. In th...
متن کاملNonparametric quantile regression for twice censored data
We consider the problem of nonparametric quantile regression for twice censored data. Two new estimates are presented, which are constructed by applying concepts of monotone rearrangements to estimates of the conditional distribution function. The proposed methods avoid the problem of crossing quantile curves. Weak uniform consistency and weak convergence is established for both estimates and t...
متن کاملNonparametric multivariate conditional distribution and quantile regression
In nonparametric multivariate regression analysis, one usually seeks methods to reduce the dimensionality of the regression function to bypass the difficulty caused by the curse of dimensionality. We study nonparametric estimation of multivariate conditional distribution and quantile regression via local univariate quadratic estimation of partial derivatives of bivariate copulas. Without restri...
متن کاملVariational Inference for Nonparametric Bayesian Quantile Regression
Quantile regression deals with the problem of computing robust estimators when the conditional mean and standard deviation of the predicted function are inadequate to capture its variability. The technique has an extensive list of applications, including health sciences, ecology and finance. In this work we present a nonparametric method of inferring quantiles and derive a novel Variational Bay...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics and Its Interface
سال: 2014
ISSN: 1938-7989,1938-7997
DOI: 10.4310/sii.2014.v7.n2.a8